
IT 168											
Summer 2017

Program 5

[bookmark: _GoBack]Due Date: August 6, 11:55 pm
Points: 50

The Problem:
A common task in computing is to take data and apply changes (called transactions) to the data, then saving the updated data. This is the type of program you will write.
	You will read a file of flight reservation data to be loaded into an array with a max size of 20. A second file will hold the transactions that will be applied to the data that has been stored in the array. At the end of the program, the updated data in the array will be written to a third file.

Flight class
This class will hold the information about a flight. It is responsible for the following data: flight number, flight date, departure airport, arrival airport, departure time, arrival time, and seat assignment. The date will be in the form mm/dd/yyyy. The time will be in the form hh:mm PM. This class should include a default constructor and another constructor that will receive data for all of the instance variables. Also include toString and equals methods. The toString needs to format the data in the form that is needed for output written to the screen in an itinerary. Two Flight classes are considered equal when they have the same flightNumber and flightDate.

Reservation class
This class holds all of the information about a reservation for one person. It will include the passenger’s name (one variable to hold first and last names), reservation number, departure flight and return flight (the flights are objects of the Flight class). Constructors should include a default constructor and another one that accepts values for all of the instance variables. Also include toString and equals methods. The toString needs to format the data in the format of output written to the screen in an itinerary. Reservations are considered to be equal when they have the same reservation number.

Airline class
This class is responsible for holding the array of reservations and all of the methods to process the transactions. Transactions are represented in the file with a numeric code as follows:

	Code
	Transaction

	1
	Add a reservation – all data will be the same format as the reservations that are loaded into the array at the beginning of the program.

	2
	Print the itinerary of one passenger – Printed to the screen

	3
	Print the itineraries of all of the reservations – Printed to the screen

	4
	Write list to file – Writes all of the updated reservations in the list to a file

AirlineInput class
There are two input files. The first file, AirlineData.txt, holds all of the existing reservations. This should be read at the beginning of the program and stored in an array. The second file, Transactions.txt, has the transaction codes and data that is associated with each code.

AirlineData.txt format
<passenger name – include first and last name in one variable>
<reservation number>
<departure flight number>
<departure date>
<departure airport>
<arrival airport>
<departure time>
<arrival time>
<seat>
<return flight number>
<return date>
<departure airport>
<arrival airport>
<departure time>
<arrival time>
<seat>

Transactions.txt format.
Note: each type of transaction requires different input. The code will be followed by the data required for that code. There will be a code and data in one of the following formats.

Transaction code 1
<code>
<passenger name – include first and last name in one variable>
< reservation number>
<departure flight number>
<departure date>
<departure airport>
<arrival airport>
<departure time>
<arrival time>
<seat>
<return flight number>
<return date>
<departure airport>
<arrival airport>
<departure time>
<arrival time>
<seat>

Transaction code 2
<code>
<reservation number>

Transaction code 3
<code>

Transaction code 4
<code>

AirlineOutput class
This class will be responsible for:
· Code 2 – Displaying the itinerary for one passenger
· Sample output:
Passenger Name: Carl Foreman
Reservation Number: 1234
DepartureFlight:
Flight Number: UA1235
Flight Date: June 23, 2014
Departure Airport: null
Arrival Airport: null
Departure Time: 4:00 PM
Arrival Time: 7:15 PM
Seat: 23A
Return Flight:
Flight Number: UA673
Flight Date: July 12, 2014
Departure Airport: null
Arrival Airport: null
Departure Time: 10:00 AM
Arrival Time: 11:25 AM
Seat: 8A
· Note that the date has been changed from the form 04/16/2014 to the form April 16, 2014
· Code 3 – Displaying the itineraries for all reservations
· This displays the itinerary for each person in the same format as above.
· Leave a blank line between each itinerary.
· Code 4 – Writing the contents of the array to the file
· This should be in the same format as the input file AirlineData.txt
· The data can be left in the format used to display to the screen.
· Name this file xxx-UpdatedData.txt where the xxx represents your initials.

Design: Create an electronic document in .doc, .docx, or .pdf format containing the pseudocode algorithm for the driver and the class diagrams for all other classes.

JavaDoc: Generate the JavaDocs for the project.

Program Submission:
· Zip your .java files for all of the classes together into a file with your initials and Program 6. Also zip the JavaDoc folder named xxx-JavaDoc6.zip
· Example format with my initials: CJH-Program6.zip
· Submit the .zip file and your design file to Program 6 in ReggieNet.

4

